
A Computational Framework for Dialectical Reasoning

Pierre St-Vincent1, Daniel Poulin2 and Paul Bratley1

2Centre de recherche en droit public
poulind@droit.umontreal.ca

1Département d’informatique et de recherche opérationnelle
{stvincen, bratley}@iro.umontreal.ca

Université de Montréal
c.p. 6128, Succursale A

Montréal (Québec)
Canada H3C 3J7

Abstract

Dialectics are important not only in law but in every
domain where knowledge is not certain; that is, everywhere
assumptions must be made. After a review of recent
advances in computational dialectics and related fields, we
present the framework of a system for constructing
dialectical arguments from a rule-based representation of
law.

In this system, meta level reasoning serves to allow for
multiple utilisations of the rules. At the object level, rules
grouped in modules represent “ground” knowledge. At the
meta level, modules contain meta level rules that query
other modules, at the object level or at some meta level, for
arguments. During the construction of arguments, meta
level rules use a filtering mechanism that works like simple
regular expressions. This mechanism selects lower level
rules according to their contexts.

The object rules of the system are marked with
interpretative contexts to permit varying points of view
while maintaining an isomorphic representation of
knowledge. The rules can be preceded by explicit negation,
and the presence of contradictory rules allows conflicting
arguments to be built. Examples are given and a discussion
of future work concludes the paper.

1. Introduction

There is nothing new in a dialectical approach to
knowledge. Since ancient times, the art of dialectics has
been allied to that of logic to add conviction to an
argument, rather than merely proving it formally. For

Plato, dialectics was the art of discussion by question and
answer; for Aristotle, arguments based on uncertain
premisses, that could be debated and defeated, were
dialectical in nature. Since Hegel dialectics has been seen
rather as an approach to reasoning that recognizes the
inseparable nature of contradictory elements that unite in a
final synthesis. Logic and dialectics both support one
another and oppose one another. Both aim to ensure
correct ways of thinking, but while the former limits itself
to formal truth, the latter tries to convince, to bring the
hearer not merely to understand, but to agree.

Legal reasoning seems to partake more of dialectics than of
logic. A lawyer does not feel himself confined to a single
reading of his texts that he would propose in every case.
Depending on his client, and depending on his objective, he
may allow himself the necessary dialectic liberty of giving
more weight to some point of view which, while not the
most evident, is nevertheless plausible, and which, above
all, advances the interests he represents. This is by no
means to say that he is free to advance any view he chooses,
no matter how unlikely, but that among several possible
defensible lines of reasoning he will choose the one that
serves his purposes. Sometimes it is possible to defend
different readings of legal rules; at others different
interpretations of the facts may give an advocate the
required room for manœuvre; but he will never be reduced
to silence. Despite being themselves trained in such
dialectical exercises, lawyers are sometimes surprised to
come across them in other disciplines, even those deemed
to be among the most positivist of the sciences. Thus in
cases concerning patents, for example, the most eminent
jurists can be astonished to encounter an old friend: "How
is it that, invariably, and in a discipline and a procedure
that is supposed to be both scientific and objective, there are
always two independent, eminent, and experienced experts
who completely disagree with each other?" [Henderson 94,
p.2] It is simple to explain this ubiquity of dialectics: no
doubt it is true that whenever points of view diverge and
arguments arise, then a dialectic process is inevitable. This
simple truth must necessarily be taken into account in any
attempt to model legal reasoning.

A number of pioneering systems that attempted to model
legal reasoning were heavily influenced by logic [Smith 87,
Susskind 87]; sometimes logic was even proposed as the
natural language to use to express legal norms [Sergot 86].
Little by little, however, researchers began to explore other
avenues that allow them to express more easily different
approaches to such norms. Rissland and Ashley were
among the first to understand the importance of being able
to express the alternate lines of reasoning that characterize
legal arguments. Their systems of case-based reasoning
have always tried to model the different approaches
accepted by the courts, whether in the area of commercial
secrets, tax exemptions, or elsewhere [Rissland 87,
Ashley 90].

Quite recently a number of approaches have been
suggested that aim to go beyond the single-mindedness of
the early systems, and to extend the dialectical capabilities
of case-based reasoning systems to the wider class of legal
expert systems in general. Many of the researchers
involved have favoured using some form of default logic,
while others rely on meta reasoning.

For instance, Prakken proposed a logical system involving
the use of Reiter’s normal defaults [Prakken 93]. It allows
for ordering conflicting arguments by comparing them
using, for instance, lex superior, lex posterior or lex
specialis. When many defaults are applicable to derive an
argument they can in turn be ordered, if necessary. This
scheme is extended to combine multiple orderings and even
the meta-level production of orderings.

Similarly Brewka [Brewka 94] uses a prioritized default
logic based on Reiter’s logic. It can implement explicit
partial orders by defining an operator (“<“) that can be used
either in the formulas or in the defaults. Its scheme is thus
very general. For example, it allows defaults to be specified
in the ordering of other defaults.

Gordon has studied a different problem, namely identifying
the legal points involved in an argument [Gordon 93]. His
system uses another nonmonotonic logic, the “conditional
entailment” of Geffner and Pearl [Geffner 92]. It can order
conflicting rules either using an “automatic” measure of
specificity or using defaults to encode the priorities. Gordon
builds upon this logic to implement the “Pleadings Game”
in which two players, the plaintiff and the defendant, argue
about a legal problem while respecting Alexy's rules of
rationality [Alexy 89]. A “formalization of Toulmin’s theory
of practical argumentation” the system allows for an
identification of the issues of a problem.

Schobbens too has designed a logic that allows him to take
account of the reliability of witnesses by ranking their
testimony, and to consider the priority of higher-level laws
(lex superior), and to make initial assumptions
[Schobbens 93]. Hage also has presented a system able to
solve conflicts between rules [Hage 93].

Sartor uses meta reasoning in logic programming. He wants
to “extend formal methods outside the domain of
deduction, to the moments of dialectical conflict – and
therefore of choice and evaluation – which characterize
legal and moral reasoning.” [Sartor 94, p. 178] His system
allows for justified preferences, exceptions, and so on. It
uses contexts to “name” the rules and identify them.
Following the Prolog execution scheme, the system builds
arguments that can defeat one another depending on
information represented by priority rules. In this way,
priorities being represented by “normal” rules, can be
defeated in their turn. Only “success” arguments are
producible by this system; it does not implement so-called
“negation by failure” and the system has only one level.

As far as meta reasoning is concerned, Hamfelt was the first
to propose a system using several levels of knowledge to
model the action of interpretative rules when applied to the
substantive legal rules [Hamfelt 89]. His system is different
from those where the role of the meta-rules is to implement
mechanisms for control or introspection. Instead, the meta-
rules (the rules of interpretation) are used to modify the
rules at the lower level (the substantive legal rules). It
remains to be seen whether it is possible to write meta-rules
able to generate automatically legally acceptable variations
of the substantive rules. Schild too has described a system
using meta-knowledge to create rules. Here the generated
rules are intended to implement substantive rules that use
“vague” predicates. In this system, whenever such a
predicate is not defined by other rules, a meta-rule is
triggered to create new rules, based on comments found in
the pertinent jurisprudence (the “obiter”). These new rules
are supposed to apply to the factual situation being
considered [Schild 93]. Poulin proposed using meta-rules
in a more general way. In his system, the meta-rules
represent four kinds of knowledge: general, procedural,
adversarial and inferential. The rules of the field in
question, relieved of these considerations, can then be
expressed in a declarative fashion. More importantly,
contradictory rules can now coexist at the object level.
Conflicts between rules are resolved by meta-rules that
model the interpretative techniques used by lawyers
[Poulin 93a; 93b].

The following sections present a computational framework
to implement the type of model proposed by Poulin. We
shall be particularly interested in the production of coherent
arguments in a setting where the object level rules may be
contradictory. Throughout the following sections we give
examples of rules and meta-rules that illustrate the
computations involved. It is worth emphasising, to avoid
misunderstanding, that these examples are intended to
exercise the system being built or to illustrate a point, not to
represent genuine legal situations.

2. Overview

The principal goal of the argument producing system
presented here is to allow us to build experimental
dialectical systems that can be easily modified to test
different research hypotheses. The system produces
arguments, that is, lines of reasoning to support a desired
conclusion. For ease of modification, a fixed scheme is not
in order. Thus we designed a programming language that is
an extension of Prolog, and a runtime support system. Only
the core of the language is described in this paper. Its
implementation is now almost complete.

Arguments produced by the system are like proof trees
augmented with contextual annotations. However in case of
failure, where a proof tree would be empty and useless, an
argument explains the reason for the failure and shows
those parts of the proof that succeeded, if any.

The language is based on metaprogramming. This clears the
way to using a purely declarative representation of object
level knowledge, as proposed by Poulin [Poulin 93a]. On
the other hand the production of arguments is mostly
procedural, and the rules for this are placed at some meta
level. There can be any number of meta levels. The rules
themselves differ whether they are at some meta level or at
the object level. At the object level the rules should mirror
the if-then structure of the rules of law [Sergot 86]; further,
they should be as isomorphic as possible to the sources
[Bench-Capon 92]. At the meta levels the rules should allow
us to implement the general, procedural, adversarial and
inferential expertise of legal thinking and judicial practice
[Poulin 93a, 93b, 93c].

Whether object or meta, rules are marked with contexts. The
context of a rule can represent a variety of meta-knowledge.
This includes:

• The factual basis of the knowledge represented by the
rule. This basis may indentify such things as the source
of law originating the rule. It could also indicate the
means by which the knowledge was obtained, when
and where it was obtained, and by whom. For instance,
something might have been learned by eavesdropping
on cellular phone frequencies.

• The theory of the particular field involved. In the legal
field, this includes the interpretative method used in
deriving the rule from some legal source [Wroblewski
88; Bergel 89; Du Pasquier 79].

• Claims that may or may not be true. This will be
illustrated later.

A program is a set of modules, some at the object level,
others at meta levels. Using modules permits us to structure
the rule bases by grouping related rules; this grouping
restricts the search for matching rules and renders it more
manageable for the programmer. It also generalizes the rule
bases by allowing us to reuse common parts in different
situations.

Object level modules (hereafter simply “object modules”)
begin with begin_object and end with end_object
statements, thus:

begin_object(sample_object).
 ...
end_object.

Object level modules contain only object level rules.

Meta level modules (hereafter simply “meta modules”)
usually take other modules as parameters. As illustrated in
the example below, they begin with begin_meta statements
where their formal parameters are declared:

begin_meta(sample_meta(parameter1, parameter2)).
 ...
end_meta.

The language implements a subtask management
architecture [van Harmelen 89]. Meta modules do their own
inferencing. When necessary they call other modules, either
meta or object, asking them to supply arguments. The called
modules then build and return arguments to their callers.
The modules that constitute a rule base, a “program” so to
speak, thus form an oriented graph where the links are the
requests and the nodes are the modules themselves. Cycles
may appear in this graph when requests make recursive
calls. The starting point of the rule base is a special module,
named top, that contains all the entry points. Since top has
no parameters its requests can resolve at run-time all the
module references encountered. This is how module
expressions containing formal parameters are translated to
expressions containing only the names of meta modules or
object modules.

The entry points are shown in menus so the user can initiate
his own requests. These entry points are defined with user
rules like the following:

begin_meta(top).
 /* somewhere inside “top” we could have this rule: */
 user(“menu entry label”) :-
 some_context => some_request in some_module.
end_meta.

Choosing the menu item menu entry label begins execution
of the request. The system will then construct arguments
for the chosen goal, putting questions to the user when it
encounters “user askable” facts. The resulting argument
trees, whether successes or failures, are finally drawn on
screen.

For the experienced user a top level is also available that
allows immediate execution of any acceptable request.

3. The object Level Rules

At the object level the rules are like pure Prolog clauses
augmented by contexts and explicit negation. The body of a
rule consists of conjunctions and disjunctions of goals
which can be explicitly negated. The head of a rule consists
of two parts, a context and a goal, separated by the ‘=>’
operator:

 context => goal :- conjunction-disjunction.

 head body

Any Prolog term, whether ground (i.e. variable free) or not,
can be used as a context. For example, suppose the
following facts and rules are in three different modules (the
syntactic elements that delimit the modules are not shown):

/* module “claims”, fact f1: */
claims(nixon) => pacifist(nixon).

/* module “peacocks_trial”, fact f2: */
testimony(“Miss Jameson”, date(24, april, 1910)) =>
 on(butcher_knife, floor_of(kitchen)).
/* module “unemployment_obj”, rule r3: */
interp_context(art(28,4,b),
 textual(ordinary_meaning),
 source(cub(45))) =>
 spouse_moving_exception(CLAIMANT, SPOUSE) :-
 military(SPOUSE),
 new_military_posting(SPOUSE).

The first fact is an instance of a simple claim, namely that
“Nixon claims he is a pacifist”. The second fact shows that
“The butcher’s knife was on the kitchen floor” is part of the
testimony given by Miss Jameson on April 24th 1910. It
gives an example of a factual context, i.e. that the rule
comes from someone’s testimony. This implies that the fact
on(butcher_knife, floor_of(kitchen)) can be used in
inferences as long as Miss Jameson’s testimony is legally
valid. Rule r3 (adapted from [Poulin 93b]) is accompanied
by its interpretative context: its source is Canadian
Unemployment Board decision number 45 and this decision
follows a textual reading [MacCormick 91] of article 28)4¬b
of the Unemployment Act, based on the ordinary meaning
of words.

Contexts can also be used to represent the experts’ opinions
with which a rule is associated [Freeman 94]. For instance,
suppose we have two divergent opinions as to whether or
not a Greek sculpture is a forgery (here r5 uses the explicit
negation operator “¬”):

theory_of(professor(alpha)) =>
 forgery(korê) :-
 color(marble, pink),
 classical(proportions),
 sharp(chisels).
theory_of(professor(beta)) =>
 ¬ forgery(korê) :- /* r5 */
 color(marble, pink),
 classical(proportions),
 sharp(chisels),
 origin(athens).

The first rule reads: “According to Professor Alpha, a korê
is a forgery if its marble is pink, its proportions are classical
and it has been sculpted with sharp chisels,” while the
second reads: “According to Professor Beta, a korê is not a
forgery if its marble is pink, its proportions are classical and
it has been sculpted with sharp chisels BUT it originates
from Athens.”

Which argument will be preferred depends on the meta
level used. In cases like this, where opinions are given, the
most specific argument is not necessarily the best.

We can generalize from ground contexts, used in the
preceding examples, by using variables. For instance,
Nixon's claim f1 in our first example could be generalized
as follows with the variable EVERYBODY:

claims(EVERYBODY) => pacifist(nixon).

This means, obviously, that everybody claims that Nixon is
a pacifist.

The rules produce arguments much like proof trees. (For a
meta interpreter that explains its reasoning whether in case
of success or failure, see [Yalçinalp 89]). In case of success
the conjunct:

cont => conj :- a1, a2, a3. /* r10 */

will produce the following argument, where the subtrees
produced by a1, a2 and a3 are shown inside triangles and
“cont => conj” is the root marked with its context:

cont => conj

a1 a2 a3

In case of failure the same conjunct will produce an
argument showing the parts that have succeeded and the
cause of the failure, following the execution scheme of
Prolog. For instance, suppose a1 succeeds but that there are
no rules for a2, so a2 fails. We would then obtain the
following argument, where the tags no arg (for “NO
ARGument”) and no rule identify failure nodes:

no arg:cont => conj

a1
no rule:c => a2

By inspecting this tree an experienced user can see which
parts have been successful up to some point and what is the
cause of the failure. As the tree suggests, there is a
compromise made here: whereas it shows the success of
a1, no effort is made to determine the eventual success of
a3. This is a compromise between exploring all possible
paths to maximize the argument trees, and annoying the
user with questions that cannot possibly lead to success.

So-called negation by failure is implemented by reversing
failed arguments. Such failures then naturally become
successes of their counterparts.

While this section has concentrated on object level rules,
meta level rules produce argument trees in a similar way, as
we will see in the following section.

4. Meta level rules, Requests and Filters

Meta level rules have the same general structure as object
level rules. The difference lies in the fact that their bodies
are conjunctions and disjunctions of requests instead of
“ordinary”, Prolog-like goals. Requests implement the
search for arguments. They are calls made from meta level
modules to other modules asking them to provide
arguments in favour of some specific goal. The requests use
filtering expressions while constructing arguments to choose
between available rules according to their contexts. The
important point is that arguments are not selected by the
filtering expressions after their production but at each step
during it.

In our system requests are like the “demo” predicate usual
in meta programming since Bowen and Kowalski’s early
work [Bowen 82]. A request consists of three parts, namely
a filtering expression, a goal and a module expression:

 cont(1), cont(2) => goal in meta(some_module).

filtering expression goal module expression

When we place a request in a meta level rule it looks like
this:

rule_context => rule_name :-
 request_filtering_exp => goal in module.

Filtering expressions (or “filters” for short) are like simple
regular expressions without parentheses. The absence of
parentheses implies that they are free of nested loops that
would unduly complicate their use and implementation.
The main difference between regular expressions and
filtering expressions lies in the presence of Prolog variables
in the latter. This means that unifications can occur when
they are used. Where regular expressions accept strings of
characters, filtering expressions accept sequences of
contexts of arguments under construction.

Define the context sequences of an argument A to be:

Csi(A) = the sequence of contexts along
 the i-th branch of A

where the i-th branch is the path from root to i-th leaf
(counted from left to right). For example, let A be the
following argument which has three branches.

c(1) => p

c(2) => q c(5) => t

c(3) => r c(4) => s c(6) => u

Its context sequences are: Cs1(A) = [c(1), c(2), c(3)],
Cs2(A) = [c(1), c(2), c(4)], and Cs3(A) = [c(1), c(5), c(6)].

Now a filtering expression accepts a complete argument
tree if it accepts all its context sequences. In detail, filters
accept context sequences as follows:

• A single term filter accepts a single context that unifies
with it after proper variable substitution. Consider for
instance the requests in the first column of the
following table. They accept the rules with contexts
shown in second column, and the resulting unifications
are shown in the third:

Request context => goal Unifications
contexte(1) => p in
m

contexte(1) =>
p none

c(X, X) => p in m c(2, Y) => p X=2 and Y=2
VAR => p in m npq => p VAR=npq

 Unifications made when an single term filter accepts a

context are carried on to succeeding steps of accepting
a branch.

• A Prolog list of single term filters such as [a, b, c]
accepts contexts that unify with any one of the
elements of the list. Thus lists implement alternatives
between contexts.

• A single term filter or a list of single term filters may be
preceded by these operators, with the meanings given:

 “*” the element may be repeated zero or more
times ;
“+” the element must be repeated at least once ;
“?” the element is optional.

• A sequence of the preceding filters accepts context
sequences accepted by each element in turn. Sequence
elements are separated by commas.

• A context sequence is completely accepted by a filter
when the last element of the sequence has been
accepted by the last element of the filter.

• As a special case, the “always free variable” denoted by
“$” is a single term filter that never unifies and can be
used as a wildcard.

A few examples will illustrate filtering expressions:

• The request:
interp_context(ART, CONT, SOURCE), *$ => p in m

accepts arguments having roots unifying with
“interp_context(ART, CONT, SOURCE)” and having any
branch.

• theory_of(X), *$, fact => p in m

accepts arguments having roots unifying with
theory_of(X) and branches ending with fact.

• theory_of(X), *$, opinion_of(X)
 => p in m

accepts arguments having roots unifying with

theory_of(X) and branches ending with the opinion of
same.

• *$, fact => p in m
accepts arguments with branches ending with fact

Module expressions define the modules in which a request
searches for arguments. The simplest module expressions
are the names of object modules and the formal parameters
of meta modules. These are combined with the names of
meta modules. For instance, in the module expression
meta_module(some_module) we have some_module, the name of
an object module, and meta_module, the name of a meta
module of arity 1.

The exact place where an argument is constructed depends
on the module expressions it meets. For instance, suppose
we have object modules civil_obj and criminal_obj and the
following meta modules:

begin_meta(meta_judge).
 ...
 /* rule1 */
 textual => responsible :- textual => faulty in
 meta_law(civil_obj).
 /* rule2 */
 textual => guilty :- textual => faulty in
 meta_law(criminal_obj).
end_meta.
begin_meta(meta_law(obj_law)).
 ...
 textual => faulty :- textual => negligent in obj_law.
end_meta.

Then the execution of rule1 will be followed by the request
textual => faulty made to civil_obj while rule2 will be
followed by the same request, this time addressed to
criminal_obj. We see that the formal parameter of meta_law
is effectively replaced at execution time by the actual
parameter of the calling request.

For another example, the following request obtains all the
arguments for the goal spouse_moving_exception in the
module unemployment_obj:

/* module “unemployment_meta”, rule meta_sme */
meta_interp_context(ART, CONT, SOURCE) =>
 meta_spouse_move_excpt(CLAIMANT, SPOUSE) :-
 /* the filter: */
 interp_context(ART, CONT, SOURCE), $* =>
 /* the goal: */
 spouse_moving_exception(CLAIMANT, SPOUSE) in
 /* the module: */
 unemployment_obj.

In meta_spouse_move_excpt, all the rules for
spouse_moving_exception in unemployment_obj with
interpretative contexts unifying with interp_context(ART,
CONT, SOURCE) will be used. Thus if interp_context(ART,
CONT, SOURCE) is called with ART, CONT and SOURCE free, then
the request will eventually backtrack on all available

contexts for spouse_moving_exception. The variables will
convey context information from the called module to the
caller. This example also shows the use of the catch-all filter
*$ which accepts any branch of any length.

For our final example we turn to the “canonical” problem of
representing priorities between competing applicable laws.
For instance, “lex superior” and “lex posteriores” are two
ways to choose between conflicting legal rules .
Suppose that at the object level two hypothetical building
regulations are applicable. The first is a general but old law
to be applied nation-wide (the National Building Code,
nat_bc for short), while the second is a recent municipal
regulation (the Municipal Building Regulation, mun_br for
short). The object level also contains the “recent/superior”
relationships between the two. Each rule is accompanied
by its textual description, placed after the htext (“Help
TEXT”) operator:

begin_object(bcodes). % Object level containing
 % the building codes
 nat_bc =>
 min_distance(5, bungalow)
 htext
 "According to the National Building Code the
 minimal distance
 between two bungalows is 5 meters.".

 mun_br =>
 min_distance(3, bungalow)
 htext
 "According to the Municipal Building Regulation the
 minimal distance
 between two bungalows is 3 meters.".

 fact =>
 more_recent(mun_br, nat_bc)
 htext
 "The Municipal-BR is more recent than
 the National-BC".

 fact =>
 superior(nat_bc, mun_br)
 htext
 "The National-BC is superior to the
 Municipal-BR".
end_module.

The meta module priorities(o) uses “recent/superior”
information in some object level module o to build
arguments for a given predicate P in this same module:

begin_meta(priorities(o)).
 lex_superior(SuperLaw) => P :-
 (fact => superior(SuperLaw, _OtherLaw) in o),
 (SuperLaw => P in o)
 htext
 “This rule implements lex superior for a given
 predicate P in a some module o. It unifies
 its context parameter with the context of
 the superior law.”.

 lex_posterior(RecentLaw) => P :-
 (fact => more_recent(RecentLaw, _OtherLaw) in o),
 (RecentLaw => P in o)
 htext
 “This rule implements lex posterior for a given

 predicate P in a some module o. It unifies its
 context parameter with the context of the
 more recent law.”.
end_module.

Figure 1 : Lex Superior Argument

Figure 2 : Lex Posterior Argument

Now suppose we execute the following request for a “lex
superior” solution at the toplevel :

?- do(lex_superior(SuperLaw) => min_distance(X,B) in
 priorities(bcodes)).

We obtain the following output:

 SuperLaw = nat_bc, X = 5, B = bungalow

And the “lex superior” argument tree is produced (See
Figure 1)

The gray nodes represent the execution of requests. The
plain nodes take place for rules and facts. and conjunct
nodes are connected to the same parent. The third node
from top shows the unification between the variable P in the
rule for lex_superior and the goal min_distance(5,

bungalow) in the request.

If we then execute this request for “lex posterior”:

?- do(lex_posterior(RecentLaw) => min_distance(X,B) in
 priorities(bcodes)).

We obtain:

 RecentLaw = mun_br, X = 3, B = bungalow

And the “lex posterior” argument is built (See Figure 2).

We could continue to multiply our examples. For instance,
our system uses both negation by failure and explicit
negation. The use we make of these two concepts, and the
relation between them, will be described in another article.

5. Conclusion

The system we have described is based on the following
premisses.

• An expert system must be able to use the expertise
peculiar to its particular application area. In law, this
means it must be able to interpret legal rules, not
simply apply them blindly.

• A legal expert system must be able to develop
arguments both for and against a given point of view.

• Object level rules must be stated in a declaratory
fashion.

From these considerations we were inevitably driven to use
a meta level architecture. The system we have built can
have any number of meta levels; its structure is modular, it
incorporates filters to handle contextual information, and it
produces proof trees (arguments) that take account of
differing interpretations of the object level rules. The
control mechanisms are explicit: using the same object level
rules, we can fix a goal and have the system produce
arguments supporting it, and also arguments against it.

The system is implemented for Macintosh computers using
AAIS Prolog. The first working prototype, which had only
one rudimentary meta level, was neverthless adequate to
allow us to test the general feasibility and desirability of our
ideas. A second version is now almost complete. Among
other things, this new version already allows us to learn
more about how to use the various kinds of negation. We
also intend to explore how not just rules, but facts too, can
be “interpreted” according to the contexts in which they
occur: how reliable they are, whether they are admissible in
evidence, and so on. Finally we intend in the course of 1995
to implement a complete example taken from a genuine
area of law to see how well the system performs on a real
application.

Acknowledgements

The work described in this paper is supported by the Social
Sciences and Humanities Research Council of Canada, and
by Quebec's Fonds pour la Formation de Chercheurs et l'Aide à
la Recherche..

References

Alexy 89 Alexy, Robert, A Theory of Legal

Argumentation, Oxford, at the Clarendon Press, 1989.

Ashley 90 Ashley, K.D., Modeling Legal Argument, MIT
Press, Cambridge, Mass., 1990.

Bench-Capon 92 Bench-Capon, T.J.M. and F. Coenen,
«Isomorphism and legal knowledge based systems»,
Artificial Intelligence and Law, vol. 1 (1992), pp. 65-86.

Bergel 89 Bergel, Jean-Louis, Théorie générale du Droit,
coll. Méthodes du Droit, Dalloz, Paris, 2nd edition
1989.

Bowen 82 Bowen, Kenneth A. and R.A. Kowalski,
«Amalgamating language and metalanguage in logic
programming», in Logic Programming (APIC Studies in
Data Processing 16), Academic Press, 1982.

Brewka 94 Brewka, G., «Reasoning about Priorities in
Default Logic», Proceedings of the Twelfth National
Conference on Artificial Intelligence, Seattle, 1994, AAAI
Press/MIT Press, Menlo Park, vol. 2, pp. 940-945.

Du Pasquier 88 Du Pasquier, Claude, Introduction à la
théorie générale et à la philosophie du Droit, Delachaux et
Niestlé, Paris, 6th edition 1988.

Freeman 94 Freeman, Kathleen, Toward Formalizing
Dialectical Argumentation, PhD Thesis, CIS-TR-94-19,
Dept of Computer Science, University of Oregon, 1994.

Gordon 93 Gordon, Thomas F., «The Pleadings Game –
Formalizing Procedural Justice», Proceedings of the
Fourth International Conference on Artificial Intelligence
and Law, Vrije Universiteit, Amsterdam, 1993, ACM
Press, New York, pp. 10-19.

Geffner 93 Geffner, H. and J. Pearl, «Conditional
Entailment: Bridging Two Approaches to Default
Reasoning»,Artificial Intelligence, 53, (2-3), pp. 209-244,
1992.

Hage 93 Hage, Jaap, «Monological reason-based
logic», Proceedings of the Fourth International Conference
on Artificial Intelligence and Law, Vrije Universiteit,
Amsterdam, 1993, ACM Press, New York, pp. 30-39.

Hamfelt 89 Andreas Hamfelt and Jonas Barklund,
«Metalevels in legal knowledge and their runnable
representation in logic», in Pre-Proceedings of the Third
International Conference Logica Informatica Diritto –
Expert Systems in Law; November 1989, Florence, vol 2,
pp. 557-576.

Henderson 94 Henderson, Gordon F., «An introduction to
patent law», Patent Law in Canada, Carswell,
Scarborough, Ontario, 1994, pp. 1-14.

MacCormick 91 MacCormick, D.N. and R.S. Summers,
Interpreting Statutes: A Comparative Study, Dartmouth,
Aldershot, 1991

Poulin 93a Poulin, Daniel, Interprétation et systèmes experts
en droit écrit, Mémoire de maîtrise, Faculté de droit,
Université de Montréal, Montréal, 1993.

Poulin 93b Poulin, Daniel, Paul Bratley, Jacques Frémont
and Ejan Mackaay, «Legal interpretation in expert
systems», Proceedings of the Fourth International
Conference on Artificial Intelligence and Law, Vrije
Universiteit, Amsterdam, 1993, ACM Press, New York,
p. 90-99.

Poulin 93c Poulin, Daniel, Pierre St-Vincent and Paul
Bratley, «Contradiction and confirmation», Proc. Intl
Conf. on Database and Expert Systems Applications —
DEXA '93, Prague, September 1993 (Lecture Nores in
Computer Science 720), Springer-Verlag, Berlin, 1993, pp.
502-513.

Prakken 93 Prakken, Henry, Logical Tools for modelling
Legal Argument, Phd Thesis, Vrije Universiteit,
Amsterdam, 1993.

Rissland 87 Rissland, E.L. and K. Ashley, «A case-based
system for trade secrets law», Proceedings of the First
International Conference on Artificial Intelligence and Law,
Northeastern University, Boston, 1987, ACM Press,
New York, pp. 60-66.

Robert 86 «Dialectique», Le grand Robert de la langue
française, Éditions Le Robert, Paris, 1986, p. 508.

Sartor 93 Sartor, Giovanni, «A simple compational
model for nonmonotonic and adversarial legal
reasoning», Proceedings of the Fourth International
Conference on Artificial Intelligence and Law, Vrije
Universiteit, Amsterdam, 1993, ACM Press, New York,
pp. 192-201.

Sartor 94 Sartor, Giovanni, «A Formal Model of Legal
Argumentation», Ratio Juris, vol. 7, no. 2, july 1994,
pp. 177-211.

Schild 93 Schild, Uri J. and Shai Herzog, «The use of
meta-rules in rule-based legal computer systems»,
Proceedings of the Fourth International Conference on
Artificial Intelligence and Law, Vrije Universiteit,
Amsterdam, 1993, ACM Press, New York, pp. 100-109.

Schobbens 93 Schobbens, Pierre-Yves, «A logic for legal
hierarchies», Proceedings of the Fourth International
Conference on Artificial Intelligence and Law, Vrije
Universiteit, Amsterdam, 1993, ACM Press, New York,
pp. 272-281.

Sergot 86 Sergot, M.J., F. Sadri, R.A. Kowalski, F.
Kriwaczek, P. Hammond and H.T. Cory, «The British
Nationality Act as logic program», Communications of
ACM, vol. 29 (1986), pp. 370-386.

Smith 87 Smith, J.C. and C. Deedman, «The application
of expert systems technology to case-based law»,
Proceedings of the First International Conference on
Artificial Intelligence and Law, Boston, 1987, ACM Press,
New York, pp. 85-93.

Susskind 87 Susskind, R.E., Expert Systems in Law : A
Jurisprudential Inquiry, Oxford, at the Clarendon Press,
1987.

van Harmelen 89 van Harmelen, F., «A classification of
meta-level architectures», in Meta-Programming in Logic
Programming, eds H. Abramson and M.H. Rogers, MIT
Press, Cambridge,Mass., 1989

Wróblewski 88 Wróblewski, J., «Interprétation», in
A.J. Arneaud (ed.), Dictionnaire encyclopédique de théorie
et de sociologie du droit, Story-Scientia, Paris, 1988,
pp. 199-201.

Yalçinalp 89 Yalçinalp, L.U and L. Sterling, «An integrated
interpreter for explaining Prolog’s successes and
failures», in Meta-Programming in Logic Programming,
ed. H. Abramson and M.H. Rogers, MIT Press,
Cambridge, Mass., 1989.

